↳ Prolog
↳ PrologToPiTRSProof
reach_in(X, Z, Edges, Not_Visited) → U2(X, Z, Edges, Not_Visited, member_in(.(X, .(Y, [])), Edges))
member_in(X, .(H, L)) → U6(X, H, L, member_in(X, L))
member_in(H, .(H, L)) → member_out(H, .(H, L))
U6(X, H, L, member_out(X, L)) → member_out(X, .(H, L))
U2(X, Z, Edges, Not_Visited, member_out(.(X, .(Y, [])), Edges)) → U3(X, Z, Edges, Not_Visited, Y, member_in(Y, Not_Visited))
U3(X, Z, Edges, Not_Visited, Y, member_out(Y, Not_Visited)) → U4(X, Z, Edges, Not_Visited, Y, delete_in(Y, Not_Visited, V1))
delete_in(X, .(H, T1), .(H, T2)) → U7(X, H, T1, T2, delete_in(X, T1, T2))
delete_in(X, .(X, Y), Y) → delete_out(X, .(X, Y), Y)
U7(X, H, T1, T2, delete_out(X, T1, T2)) → delete_out(X, .(H, T1), .(H, T2))
U4(X, Z, Edges, Not_Visited, Y, delete_out(Y, Not_Visited, V1)) → U5(X, Z, Edges, Not_Visited, reach_in(Y, Z, Edges, V1))
reach_in(X, Y, Edges, Not_Visited) → U1(X, Y, Edges, Not_Visited, member_in(.(X, .(Y, [])), Edges))
U1(X, Y, Edges, Not_Visited, member_out(.(X, .(Y, [])), Edges)) → reach_out(X, Y, Edges, Not_Visited)
U5(X, Z, Edges, Not_Visited, reach_out(Y, Z, Edges, V1)) → reach_out(X, Z, Edges, Not_Visited)
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
reach_in(X, Z, Edges, Not_Visited) → U2(X, Z, Edges, Not_Visited, member_in(.(X, .(Y, [])), Edges))
member_in(X, .(H, L)) → U6(X, H, L, member_in(X, L))
member_in(H, .(H, L)) → member_out(H, .(H, L))
U6(X, H, L, member_out(X, L)) → member_out(X, .(H, L))
U2(X, Z, Edges, Not_Visited, member_out(.(X, .(Y, [])), Edges)) → U3(X, Z, Edges, Not_Visited, Y, member_in(Y, Not_Visited))
U3(X, Z, Edges, Not_Visited, Y, member_out(Y, Not_Visited)) → U4(X, Z, Edges, Not_Visited, Y, delete_in(Y, Not_Visited, V1))
delete_in(X, .(H, T1), .(H, T2)) → U7(X, H, T1, T2, delete_in(X, T1, T2))
delete_in(X, .(X, Y), Y) → delete_out(X, .(X, Y), Y)
U7(X, H, T1, T2, delete_out(X, T1, T2)) → delete_out(X, .(H, T1), .(H, T2))
U4(X, Z, Edges, Not_Visited, Y, delete_out(Y, Not_Visited, V1)) → U5(X, Z, Edges, Not_Visited, reach_in(Y, Z, Edges, V1))
reach_in(X, Y, Edges, Not_Visited) → U1(X, Y, Edges, Not_Visited, member_in(.(X, .(Y, [])), Edges))
U1(X, Y, Edges, Not_Visited, member_out(.(X, .(Y, [])), Edges)) → reach_out(X, Y, Edges, Not_Visited)
U5(X, Z, Edges, Not_Visited, reach_out(Y, Z, Edges, V1)) → reach_out(X, Z, Edges, Not_Visited)
REACH_IN(X, Z, Edges, Not_Visited) → U21(X, Z, Edges, Not_Visited, member_in(.(X, .(Y, [])), Edges))
REACH_IN(X, Z, Edges, Not_Visited) → MEMBER_IN(.(X, .(Y, [])), Edges)
MEMBER_IN(X, .(H, L)) → U61(X, H, L, member_in(X, L))
MEMBER_IN(X, .(H, L)) → MEMBER_IN(X, L)
U21(X, Z, Edges, Not_Visited, member_out(.(X, .(Y, [])), Edges)) → U31(X, Z, Edges, Not_Visited, Y, member_in(Y, Not_Visited))
U21(X, Z, Edges, Not_Visited, member_out(.(X, .(Y, [])), Edges)) → MEMBER_IN(Y, Not_Visited)
U31(X, Z, Edges, Not_Visited, Y, member_out(Y, Not_Visited)) → U41(X, Z, Edges, Not_Visited, Y, delete_in(Y, Not_Visited, V1))
U31(X, Z, Edges, Not_Visited, Y, member_out(Y, Not_Visited)) → DELETE_IN(Y, Not_Visited, V1)
DELETE_IN(X, .(H, T1), .(H, T2)) → U71(X, H, T1, T2, delete_in(X, T1, T2))
DELETE_IN(X, .(H, T1), .(H, T2)) → DELETE_IN(X, T1, T2)
U41(X, Z, Edges, Not_Visited, Y, delete_out(Y, Not_Visited, V1)) → U51(X, Z, Edges, Not_Visited, reach_in(Y, Z, Edges, V1))
U41(X, Z, Edges, Not_Visited, Y, delete_out(Y, Not_Visited, V1)) → REACH_IN(Y, Z, Edges, V1)
REACH_IN(X, Y, Edges, Not_Visited) → U11(X, Y, Edges, Not_Visited, member_in(.(X, .(Y, [])), Edges))
REACH_IN(X, Y, Edges, Not_Visited) → MEMBER_IN(.(X, .(Y, [])), Edges)
reach_in(X, Z, Edges, Not_Visited) → U2(X, Z, Edges, Not_Visited, member_in(.(X, .(Y, [])), Edges))
member_in(X, .(H, L)) → U6(X, H, L, member_in(X, L))
member_in(H, .(H, L)) → member_out(H, .(H, L))
U6(X, H, L, member_out(X, L)) → member_out(X, .(H, L))
U2(X, Z, Edges, Not_Visited, member_out(.(X, .(Y, [])), Edges)) → U3(X, Z, Edges, Not_Visited, Y, member_in(Y, Not_Visited))
U3(X, Z, Edges, Not_Visited, Y, member_out(Y, Not_Visited)) → U4(X, Z, Edges, Not_Visited, Y, delete_in(Y, Not_Visited, V1))
delete_in(X, .(H, T1), .(H, T2)) → U7(X, H, T1, T2, delete_in(X, T1, T2))
delete_in(X, .(X, Y), Y) → delete_out(X, .(X, Y), Y)
U7(X, H, T1, T2, delete_out(X, T1, T2)) → delete_out(X, .(H, T1), .(H, T2))
U4(X, Z, Edges, Not_Visited, Y, delete_out(Y, Not_Visited, V1)) → U5(X, Z, Edges, Not_Visited, reach_in(Y, Z, Edges, V1))
reach_in(X, Y, Edges, Not_Visited) → U1(X, Y, Edges, Not_Visited, member_in(.(X, .(Y, [])), Edges))
U1(X, Y, Edges, Not_Visited, member_out(.(X, .(Y, [])), Edges)) → reach_out(X, Y, Edges, Not_Visited)
U5(X, Z, Edges, Not_Visited, reach_out(Y, Z, Edges, V1)) → reach_out(X, Z, Edges, Not_Visited)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
REACH_IN(X, Z, Edges, Not_Visited) → U21(X, Z, Edges, Not_Visited, member_in(.(X, .(Y, [])), Edges))
REACH_IN(X, Z, Edges, Not_Visited) → MEMBER_IN(.(X, .(Y, [])), Edges)
MEMBER_IN(X, .(H, L)) → U61(X, H, L, member_in(X, L))
MEMBER_IN(X, .(H, L)) → MEMBER_IN(X, L)
U21(X, Z, Edges, Not_Visited, member_out(.(X, .(Y, [])), Edges)) → U31(X, Z, Edges, Not_Visited, Y, member_in(Y, Not_Visited))
U21(X, Z, Edges, Not_Visited, member_out(.(X, .(Y, [])), Edges)) → MEMBER_IN(Y, Not_Visited)
U31(X, Z, Edges, Not_Visited, Y, member_out(Y, Not_Visited)) → U41(X, Z, Edges, Not_Visited, Y, delete_in(Y, Not_Visited, V1))
U31(X, Z, Edges, Not_Visited, Y, member_out(Y, Not_Visited)) → DELETE_IN(Y, Not_Visited, V1)
DELETE_IN(X, .(H, T1), .(H, T2)) → U71(X, H, T1, T2, delete_in(X, T1, T2))
DELETE_IN(X, .(H, T1), .(H, T2)) → DELETE_IN(X, T1, T2)
U41(X, Z, Edges, Not_Visited, Y, delete_out(Y, Not_Visited, V1)) → U51(X, Z, Edges, Not_Visited, reach_in(Y, Z, Edges, V1))
U41(X, Z, Edges, Not_Visited, Y, delete_out(Y, Not_Visited, V1)) → REACH_IN(Y, Z, Edges, V1)
REACH_IN(X, Y, Edges, Not_Visited) → U11(X, Y, Edges, Not_Visited, member_in(.(X, .(Y, [])), Edges))
REACH_IN(X, Y, Edges, Not_Visited) → MEMBER_IN(.(X, .(Y, [])), Edges)
reach_in(X, Z, Edges, Not_Visited) → U2(X, Z, Edges, Not_Visited, member_in(.(X, .(Y, [])), Edges))
member_in(X, .(H, L)) → U6(X, H, L, member_in(X, L))
member_in(H, .(H, L)) → member_out(H, .(H, L))
U6(X, H, L, member_out(X, L)) → member_out(X, .(H, L))
U2(X, Z, Edges, Not_Visited, member_out(.(X, .(Y, [])), Edges)) → U3(X, Z, Edges, Not_Visited, Y, member_in(Y, Not_Visited))
U3(X, Z, Edges, Not_Visited, Y, member_out(Y, Not_Visited)) → U4(X, Z, Edges, Not_Visited, Y, delete_in(Y, Not_Visited, V1))
delete_in(X, .(H, T1), .(H, T2)) → U7(X, H, T1, T2, delete_in(X, T1, T2))
delete_in(X, .(X, Y), Y) → delete_out(X, .(X, Y), Y)
U7(X, H, T1, T2, delete_out(X, T1, T2)) → delete_out(X, .(H, T1), .(H, T2))
U4(X, Z, Edges, Not_Visited, Y, delete_out(Y, Not_Visited, V1)) → U5(X, Z, Edges, Not_Visited, reach_in(Y, Z, Edges, V1))
reach_in(X, Y, Edges, Not_Visited) → U1(X, Y, Edges, Not_Visited, member_in(.(X, .(Y, [])), Edges))
U1(X, Y, Edges, Not_Visited, member_out(.(X, .(Y, [])), Edges)) → reach_out(X, Y, Edges, Not_Visited)
U5(X, Z, Edges, Not_Visited, reach_out(Y, Z, Edges, V1)) → reach_out(X, Z, Edges, Not_Visited)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDP
DELETE_IN(X, .(H, T1), .(H, T2)) → DELETE_IN(X, T1, T2)
reach_in(X, Z, Edges, Not_Visited) → U2(X, Z, Edges, Not_Visited, member_in(.(X, .(Y, [])), Edges))
member_in(X, .(H, L)) → U6(X, H, L, member_in(X, L))
member_in(H, .(H, L)) → member_out(H, .(H, L))
U6(X, H, L, member_out(X, L)) → member_out(X, .(H, L))
U2(X, Z, Edges, Not_Visited, member_out(.(X, .(Y, [])), Edges)) → U3(X, Z, Edges, Not_Visited, Y, member_in(Y, Not_Visited))
U3(X, Z, Edges, Not_Visited, Y, member_out(Y, Not_Visited)) → U4(X, Z, Edges, Not_Visited, Y, delete_in(Y, Not_Visited, V1))
delete_in(X, .(H, T1), .(H, T2)) → U7(X, H, T1, T2, delete_in(X, T1, T2))
delete_in(X, .(X, Y), Y) → delete_out(X, .(X, Y), Y)
U7(X, H, T1, T2, delete_out(X, T1, T2)) → delete_out(X, .(H, T1), .(H, T2))
U4(X, Z, Edges, Not_Visited, Y, delete_out(Y, Not_Visited, V1)) → U5(X, Z, Edges, Not_Visited, reach_in(Y, Z, Edges, V1))
reach_in(X, Y, Edges, Not_Visited) → U1(X, Y, Edges, Not_Visited, member_in(.(X, .(Y, [])), Edges))
U1(X, Y, Edges, Not_Visited, member_out(.(X, .(Y, [])), Edges)) → reach_out(X, Y, Edges, Not_Visited)
U5(X, Z, Edges, Not_Visited, reach_out(Y, Z, Edges, V1)) → reach_out(X, Z, Edges, Not_Visited)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ PiDP
↳ PiDP
DELETE_IN(X, .(H, T1), .(H, T2)) → DELETE_IN(X, T1, T2)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPSizeChangeProof
↳ PiDP
↳ PiDP
DELETE_IN(X, .(H, T1)) → DELETE_IN(X, T1)
From the DPs we obtained the following set of size-change graphs:
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
MEMBER_IN(X, .(H, L)) → MEMBER_IN(X, L)
reach_in(X, Z, Edges, Not_Visited) → U2(X, Z, Edges, Not_Visited, member_in(.(X, .(Y, [])), Edges))
member_in(X, .(H, L)) → U6(X, H, L, member_in(X, L))
member_in(H, .(H, L)) → member_out(H, .(H, L))
U6(X, H, L, member_out(X, L)) → member_out(X, .(H, L))
U2(X, Z, Edges, Not_Visited, member_out(.(X, .(Y, [])), Edges)) → U3(X, Z, Edges, Not_Visited, Y, member_in(Y, Not_Visited))
U3(X, Z, Edges, Not_Visited, Y, member_out(Y, Not_Visited)) → U4(X, Z, Edges, Not_Visited, Y, delete_in(Y, Not_Visited, V1))
delete_in(X, .(H, T1), .(H, T2)) → U7(X, H, T1, T2, delete_in(X, T1, T2))
delete_in(X, .(X, Y), Y) → delete_out(X, .(X, Y), Y)
U7(X, H, T1, T2, delete_out(X, T1, T2)) → delete_out(X, .(H, T1), .(H, T2))
U4(X, Z, Edges, Not_Visited, Y, delete_out(Y, Not_Visited, V1)) → U5(X, Z, Edges, Not_Visited, reach_in(Y, Z, Edges, V1))
reach_in(X, Y, Edges, Not_Visited) → U1(X, Y, Edges, Not_Visited, member_in(.(X, .(Y, [])), Edges))
U1(X, Y, Edges, Not_Visited, member_out(.(X, .(Y, [])), Edges)) → reach_out(X, Y, Edges, Not_Visited)
U5(X, Z, Edges, Not_Visited, reach_out(Y, Z, Edges, V1)) → reach_out(X, Z, Edges, Not_Visited)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ PiDP
MEMBER_IN(X, .(H, L)) → MEMBER_IN(X, L)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPSizeChangeProof
↳ PiDP
MEMBER_IN(.(H, L)) → MEMBER_IN(L)
From the DPs we obtained the following set of size-change graphs:
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
REACH_IN(X, Z, Edges, Not_Visited) → U21(X, Z, Edges, Not_Visited, member_in(.(X, .(Y, [])), Edges))
U41(X, Z, Edges, Not_Visited, Y, delete_out(Y, Not_Visited, V1)) → REACH_IN(Y, Z, Edges, V1)
U31(X, Z, Edges, Not_Visited, Y, member_out(Y, Not_Visited)) → U41(X, Z, Edges, Not_Visited, Y, delete_in(Y, Not_Visited, V1))
U21(X, Z, Edges, Not_Visited, member_out(.(X, .(Y, [])), Edges)) → U31(X, Z, Edges, Not_Visited, Y, member_in(Y, Not_Visited))
reach_in(X, Z, Edges, Not_Visited) → U2(X, Z, Edges, Not_Visited, member_in(.(X, .(Y, [])), Edges))
member_in(X, .(H, L)) → U6(X, H, L, member_in(X, L))
member_in(H, .(H, L)) → member_out(H, .(H, L))
U6(X, H, L, member_out(X, L)) → member_out(X, .(H, L))
U2(X, Z, Edges, Not_Visited, member_out(.(X, .(Y, [])), Edges)) → U3(X, Z, Edges, Not_Visited, Y, member_in(Y, Not_Visited))
U3(X, Z, Edges, Not_Visited, Y, member_out(Y, Not_Visited)) → U4(X, Z, Edges, Not_Visited, Y, delete_in(Y, Not_Visited, V1))
delete_in(X, .(H, T1), .(H, T2)) → U7(X, H, T1, T2, delete_in(X, T1, T2))
delete_in(X, .(X, Y), Y) → delete_out(X, .(X, Y), Y)
U7(X, H, T1, T2, delete_out(X, T1, T2)) → delete_out(X, .(H, T1), .(H, T2))
U4(X, Z, Edges, Not_Visited, Y, delete_out(Y, Not_Visited, V1)) → U5(X, Z, Edges, Not_Visited, reach_in(Y, Z, Edges, V1))
reach_in(X, Y, Edges, Not_Visited) → U1(X, Y, Edges, Not_Visited, member_in(.(X, .(Y, [])), Edges))
U1(X, Y, Edges, Not_Visited, member_out(.(X, .(Y, [])), Edges)) → reach_out(X, Y, Edges, Not_Visited)
U5(X, Z, Edges, Not_Visited, reach_out(Y, Z, Edges, V1)) → reach_out(X, Z, Edges, Not_Visited)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
REACH_IN(X, Z, Edges, Not_Visited) → U21(X, Z, Edges, Not_Visited, member_in(.(X, .(Y, [])), Edges))
U41(X, Z, Edges, Not_Visited, Y, delete_out(Y, Not_Visited, V1)) → REACH_IN(Y, Z, Edges, V1)
U31(X, Z, Edges, Not_Visited, Y, member_out(Y, Not_Visited)) → U41(X, Z, Edges, Not_Visited, Y, delete_in(Y, Not_Visited, V1))
U21(X, Z, Edges, Not_Visited, member_out(.(X, .(Y, [])), Edges)) → U31(X, Z, Edges, Not_Visited, Y, member_in(Y, Not_Visited))
member_in(X, .(H, L)) → U6(X, H, L, member_in(X, L))
member_in(H, .(H, L)) → member_out(H, .(H, L))
delete_in(X, .(H, T1), .(H, T2)) → U7(X, H, T1, T2, delete_in(X, T1, T2))
delete_in(X, .(X, Y), Y) → delete_out(X, .(X, Y), Y)
U6(X, H, L, member_out(X, L)) → member_out(X, .(H, L))
U7(X, H, T1, T2, delete_out(X, T1, T2)) → delete_out(X, .(H, T1), .(H, T2))
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPOrderProof
REACH_IN(X, Z, Edges, Not_Visited) → U21(Z, Edges, Not_Visited, member_in(Edges))
U31(Z, Edges, Not_Visited, Y, member_out(Y)) → U41(Z, Edges, Y, delete_in(Y, Not_Visited))
U41(Z, Edges, Y, delete_out(V1)) → REACH_IN(Y, Z, Edges, V1)
U21(Z, Edges, Not_Visited, member_out(.(X, .(Y, [])))) → U31(Z, Edges, Not_Visited, Y, member_in(Not_Visited))
member_in(.(H, L)) → U6(member_in(L))
member_in(.(H, L)) → member_out(H)
delete_in(X, .(H, T1)) → U7(H, delete_in(X, T1))
delete_in(X, .(X, Y)) → delete_out(Y)
U6(member_out(X)) → member_out(X)
U7(H, delete_out(T2)) → delete_out(.(H, T2))
member_in(x0)
delete_in(x0, x1)
U6(x0)
U7(x0, x1)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
U31(Z, Edges, Not_Visited, Y, member_out(Y)) → U41(Z, Edges, Y, delete_in(Y, Not_Visited))
Used ordering: Polynomial interpretation [25]:
REACH_IN(X, Z, Edges, Not_Visited) → U21(Z, Edges, Not_Visited, member_in(Edges))
U41(Z, Edges, Y, delete_out(V1)) → REACH_IN(Y, Z, Edges, V1)
U21(Z, Edges, Not_Visited, member_out(.(X, .(Y, [])))) → U31(Z, Edges, Not_Visited, Y, member_in(Not_Visited))
POL(.(x1, x2)) = 1 + x2
POL(REACH_IN(x1, x2, x3, x4)) = 1 + x4
POL(U21(x1, x2, x3, x4)) = 1 + x3
POL(U31(x1, x2, x3, x4, x5)) = 1 + x3
POL(U41(x1, x2, x3, x4)) = x4
POL(U6(x1)) = 0
POL(U7(x1, x2)) = 1 + x2
POL([]) = 0
POL(delete_in(x1, x2)) = x2
POL(delete_out(x1)) = 1 + x1
POL(member_in(x1)) = 0
POL(member_out(x1)) = 0
U7(H, delete_out(T2)) → delete_out(.(H, T2))
delete_in(X, .(X, Y)) → delete_out(Y)
delete_in(X, .(H, T1)) → U7(H, delete_in(X, T1))
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
REACH_IN(X, Z, Edges, Not_Visited) → U21(Z, Edges, Not_Visited, member_in(Edges))
U41(Z, Edges, Y, delete_out(V1)) → REACH_IN(Y, Z, Edges, V1)
U21(Z, Edges, Not_Visited, member_out(.(X, .(Y, [])))) → U31(Z, Edges, Not_Visited, Y, member_in(Not_Visited))
member_in(.(H, L)) → U6(member_in(L))
member_in(.(H, L)) → member_out(H)
delete_in(X, .(H, T1)) → U7(H, delete_in(X, T1))
delete_in(X, .(X, Y)) → delete_out(Y)
U6(member_out(X)) → member_out(X)
U7(H, delete_out(T2)) → delete_out(.(H, T2))
member_in(x0)
delete_in(x0, x1)
U6(x0)
U7(x0, x1)